String Theory in 1000 Words (Kind Of)

string-theory-1024x576

By Bradley Stockwell

Because my last two posts were quite lengthy, I’ve decided to limit myself to 1000 words on this one. Before I begin, I must credit the physicist Brian Greene for much of the insight and some of the examples I’m going to use. Without his book The Elegant Universe, I wouldn’t know where to begin in trying to explain string theory.

In short, string theory is the leading candidate for a theory of everything; a solution to the problem of trying to connect quantum mechanics to relativity. Because it has yet to be proven experimentally, many physicists have a hard time accepting it and think of it as nothing more than a mathematical contrivance. However, I must emphasize, it has also yet to be disproven; in fact many of the recent discoveries made in particle physics and cosmology were first predicted by string theory. Like quantum mechanics when it was first conceived, it has divided the physics community in two. Although the theory has enlightened us to some features of our universe and is arguably the most beautiful theory since Einstein’s general relativity, it still lacks definitive evidence for reasons that’ll be obvious later. But there is some hope on the horizon. After two years of upgrades, in the upcoming month, the LHC—the particle accelerator that discovered the Higgs Boson (the God Particle), will be starting up again to dive deeper into some of these enlightenments that string theory has given us and may further serve as evidence for it.

So now that you have a general overview, let’s get to the nitty gritty. According to the theory, our universe is made up of ten to eleven dimensions, however we only experience four of them. Think about the way in which you give someone your location. You tell them you’re on the corner of Main and Broadway on the second floor of such-and-such building. These coordinates represent the three spatial dimensions: left and right, forward and back and up and down that we’re familiar with. Of course you also give a time in which you’ll be at this three dimensional location and that is dimension number four.

Where are these other six to seven dimensions hiding then? They’re rolled up into tiny six dimensional shapes called Calabi-Yau shapes, named after the mathematicians who created them, that are woven into the fabric of the universe. You can sort of imagine them as knots that hold the threads of the universe together. The seventh possible dimension comes from an extension of string theory called M-theory, which basically adds another height dimension, but we can ignore that for now. These Calabi-Yau ‘knots’ are unfathomably small; as small as you can possibly get. This is why string theory has remained unproven, and consequently saves it from being disproven. With all the technology we currently possess, we just can’t probe down that far; down to something called the Planck length. To give you a reference point of the Planck length, imagine if an atom were the size of our entire universe, this length would be about as long as your average tree here on Earth.

string_dimensions

Calabi-Yau shapes, or ‘knots’ that hold the fabric of the universe together.

The exact shape of these six dimensional knots is unknown, but it is important because it has a profound impact on our universe. At its core, string theory imagines everything in our universe as being made of the same material, microscopic strings of energy. And just the way air being funneled through a French horn has vibrational patterns that create various musical notes, strings that are funneled through these six dimensional knots have vibrational patterns that create various particle properties, such as mass, charge and something called spin. These properties dictate how a particle will influence our universe and how it will interact with other particles. Some particles become gravity, others become the forces that attract, glue and pull apart matter particles. This sets the stage for particles like quarks to coalesce into protons and neutrons, which interact with electrons to become atoms. Atoms interact with other atoms to become molecules and molecules interact with other molecules to become matter, until eventually you have this thing we call the universe. Amazing isn’t it? The reality we perceive could be nothing more than a grand symphony of vibrating strings.

Many string theorists have tried to pin down the exact Calabi-Yau shape that created our universe, but the mathematics seems to say it’s not possible; that there is an infinite amount of possibilities. This leads us down an existential rabbit hole of sorts and opens up possibilities that the human brain may never comprehend about reality. Multiverse theorists (the cosmology counterparts to string theorists) have proposed that because there is an infinite number of possible shapes that there is an infinite variety of universes that could all exist within one giant multidimensional form called the multiverse. This ties in with another component of the multiverse theory I’ve mention previously; that behind every black hole is another universe. Because the gravitational pull within a black hole is so great, it would cause these Calabi-Yau ‘knots’ to become detangled and reform into another shape. Changing this shape would change string energy vibrations, which would change particle properties and create an entirely new universe with a new set of laws for physics. Some may be sustainable—such as in the case of our universe—or unsustainable. Trying to guess the exact Calabi-Yau shape a black hole would form would kind of be like trying to calculate the innumerable factors that make up the unique shape of a single snowflake.

The multiverse theory along with M-theory also leads to the possibility that forces in other universes, or dimensions, may be stronger or weaker than within ours. For example gravity, the weakest of the four fundamental forces in our universe, may be sourced in a neighboring universe or dimension where it is stronger and we are just experiencing the residual effect of what bleeds through. Sort of like muffled music from a neighbor’s house party bleeding through the walls of your house. The importance of this possibility is gravity may be a communication link to other universes or dimensions—something that the movie Interstellar played off of.

Well I’ve gone over by 52 words now (sorry I tried my best!), so until next time, stay curious my friends.

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s